
Advanced Rendering Techniques (2022)

1

CS562 Final Project Report

Real Time Volumetric Shadows

Alex Demirci Nijmeijer

DigiPen Institute of Technology Europe-Bilbao

Abstract

Volumetric lighting is an effect that allows to perceive the beam of a light source. It can help

with adding depth and dramatism to a scene, overhauling the overall image.

This report is about the implementation of a paper called Real Time Volumetric Shadows

using Polygonal Light Volumes by Markus Billeter, Erik Sintorn and Ulf Assarsson.

This report will discuss what is the problem to solve, how the paper solves it, my solution,

how other papers approach this effect and any improvements that can be made.

1. Introduction

Volumetric lighting is mainly caused by light

scattering, according to B. Kruppa & G.

Strube (1994: 157), a term referring to

physical processes involving the interaction of

light and matter. It is because of such

interactions that the beam of a light can be

physically seen. This beam can help both

artistically and narratively in both movies and

videogames. Volumetric lighting can add

depth to a scene, and it can also help to direct

the eye towards a specific position on the

screen.

This type of effect has existed for a long time

in computer graphics and has been used an

infinite number of times in animated movies,

however, these accurate simulations are

usually computed using path tracing or similar

techniques which are, as for now, not suitable

for real time applications.

 It is possible to solve such problem using a

simpler model that only considers single

scattering in a homogeneous medium, which

is accurate enough to be able to run at real

time framerates.

2. Solution Proposed

The solution’s objective is to compute the

amount of light from a point towards an

observer in a homogeneous medium, that is,

from a light towards the camera in a medium

that stays the same.

This amount of light, called airlight, is given

by the following integral [MBSA10].

𝐿𝑎(𝑑0, 𝑑1) = ∫ 𝛽𝑘(𝛼)
𝐼0𝑒𝛽𝑑(𝑥)

𝑑(𝑥)2
𝑒−𝛽𝑥𝑑𝑥

𝑑1

𝑑0
 (1)

This equation is solved in [SRNN05]. 𝛽

symbolizes the scattering coefficient of the

medium and 𝐼0 the radiant intensity of the light

source. What equation 1 determines is the

airlight along a segment between the points d0

and d1.

The model used does not consider airlight in

non-lit areas (areas occluded by an object) and

hence only lit areas contribute to the total

airlight. It is then possible to express the total

airlight as a sum.

Advanced Rendering Techniques (2022)

2

Figure 1: Example of a scene where two

occluders generate shadows that are

intersected by the view ray. The view ray starts

at x = 0 and enters an unlit region at x = x0,

and x = x2, enters a lit region at x = x1 and

x = x3 and intersects an object at x = x4.

As mentioned earlier, only lit regions

contribute to the total airlight. Hence, taking

the example in Figure 1:

𝐿𝑎𝑇𝑜𝑡𝑎𝑙 = 𝐿𝑎(0, 𝑥0) + 𝐿𝑎(𝑥1, 𝑥2) + 𝐿𝑎(𝑥3, 𝑥4).

It quickly becomes apparent that detecting all

these regions is not trivial and if done can

reduce performance [MBSA10].

Using the Additivity of intervals in integrals

property, it is possible to split the integral

between two points A and B into two different

ones at a new point C. It is then possible to

rewrite the equation above as:

𝐿𝑎𝑇𝑜𝑡𝑎𝑙 = 𝐿𝑎(0, 𝑥0) − 𝐿𝑎(0, 𝑥1) +

 𝐿𝑎(0, 𝑥2) − 𝐿𝑎(0, 𝑥3) +

 𝐿𝑎(0, 𝑥4).

At this stage, all computations use the eye’s

position and the intersection with a boundary

along the view ray. It is important to note how

every transition from an unlit to a lit region is

subtracted and every transition from a lit to an

unlit region is added. This will be represented

by the parameter Sn.

Combining everything together the total

airlight along a single view ray is [MBSA10]:

𝐿𝑎𝑇𝑜𝑡𝑎𝑙 = ∑ 𝑆𝑛 𝐿𝑎(0, 𝑥𝑛)𝑛
0 (2)

As mentioned before, Sn will be 1 if going

from a lit to an unlit region and -1 if going

from an unlit to a lit region.

As the paper suggests, creating an enclosed

volume will make the computation of the total

airlight extremely simple. The idea is to use

shadow maps to generate a mesh grid that

matches the resolution of the shadow map.

Then the shadow map depths are read, and the

mesh vertices are displaced by such depth.

Finally, the border edges of the mesh are

connected to the light source, creating a

directly illuminated volume for it. All of this is

done in the GPU following McCool’s

implementation [McC00].

Once the directly illuminated volume is

generated, it is possible to render it and

compute the total airlight. Each fragment

shader call would represent an eye-ray

intersection with the boundaries. Each

fragment will compute a term in equation 2

and Sn will be determined by front facing and

back facing triangles. Front facing triangles

will represent that the ray is entering a lit

region and Sn will be -1, and vice versa.

The total sum of the equation is computed

using additive blending which allows to sum

all the results along the view ray. As the paper

mentions, it is very desirable to render the

mesh with depth testing disabled, but because

of inaccuracies of the shadow map, artifacts

will appear [MBSA10]. This happens because

some fragments will be inside the scene

geometry and some other not.

This can easily be fixed by disabling depth

testing and passing the depth buffer to the

fragment shader and basically clamping the

values to the scene’s depth and then

processing the fragment as usual. This means

that if the current fragment is beyond the

maximum stored depth in the depth buffer, it

will be set to have that depth.

 In addition to that, the paper suggests to use

Adaptive Tessellation. This is because the

algorithm’s performance depends only on the

resolution of the shadow map. The higher the

resolution, the more vertices are generated for

the mesh. Flat surfaces do not require of a

Advanced Rendering Techniques (2022)

3

Figure 2: Surface acne produced by the innacuracies of a shadow map with a resolution of 512x512.

It is possible to see how some of the fragments are inside the primitives producing this so called

“surface acne”. Increasing the shadow map resolution mitigates the artifact but does not make it

disappear.

large amount of vertices whereas places in the

mesh where there is a lot of variance in depth

and height do. Tessellating the mesh will

reduce the number of vertices significantly,

improving the overall performance.

3. My Implementation

In this case, the volumetric shadows were

implemented exclusively for directional

lights. A shadow map needs to be generated

with a square resolution and an orthogonal

projection. The orthographic projection takes

4 parameters: left, right, top and bottom.

These four values need to be the same in order

to form a completely square projection. This

value will be referred as orthogonal scale.

Generating the shadow map is extremely

straightforward, in the deferred shading

pipeline, the scene needs to be drawn from the

lights point of view and stored as a texture

with the depth values.

3.1 Generating the geometry on the CPU

In order to generate the geometry, what was

done was to set an initial position at the point

(-1, 1, 0) and compute the distance each

points need to have with each other to be

evenly spaced in the grid. As the mesh, in

model coordinates, goes from -1 to 1 in both x

and y axis, the total distance is 2. Dividing 2

by the resolution on either axis results in the

mentioned distance.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
2

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

Once the distance between the points is

obtained, it is possible to loop through rows

and columns and offset the initial point to fill

the grid.

for (int row = 0; row < resolution.y; ++row)
{

for (int col = 0; col < resolution.x; ++col)
 {

 glm::vec3 point = initPos;
 point.x += (col * distanceBetweenPoints);
 point.y -= (row * distanceBetweenPoints);

 mPoints[(size_t)columns * (size_t)row + (size_t)col] = point;
 }
}

As it is possible to see, the push_back()

function of vectors is not used, this is because

this function allocates memory every time its

capacity is reached, hence, all of this memory

is allocated before hand and then the array is

accessed via the subscript operator for

efficiency. The resizing is the multiplication of

the width and height of the resolution + 1. This

extra space in the array is where the lights

position is stored in order to connect the

border edges of the mesh later.

Generating the grid in a brute force manner

will have a huge impact on performance and

how memory is used because of the

duplication of triangles. That is why element

buffer objects were used in order to reduce the

duplication of points and give a boost to

performance.

Advanced Rendering Techniques (2022)

4

Figure 3: Illustration on how vertex indices are stored. Not using element buffer objects would

increase the number of vertices the model uses. Both triangles use vertex 0 and 2 and it is then

tempting to generate the left triangle with 3 vertices and right triangle with 3 more vertices, with a

total of 6. It is possible to reduce this to only 4. In the case of a 4x4 grid not using EBOs would yield

54 vertices and using them only 16. It is possible to see how quickly this can scale with larger

resolution grids.

 Once the vertices and indices are computed

and stored, they are sent to the GPU. It is

important to note that only the position

attribute is used as no other type of attributes

such as UVs or normals are required.

// upload the vertices
glBindBuffer(GL_ARRAY_BUFFER, mVbo);
glBufferData(GL_ARRAY_BUFFER, sizeof(glm::vec3) * mPoints.size(),
reinterpret_cast<void*>(mPoints.data()), GL_STATIC_DRAW);

// upload the indices
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mEbo);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(unsigned) * mElements.size(),
mElements.data() , GL_STATIC_DRAW);

// set the attribute for positions only
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(glm::vec3), (void*)0);

In terms of matrix transformations, the model

to world matrix is computed in a very simple

way. For translation, the plane is placed at the

light’s position, for rotation, it is rotated to

face the same direction as the light and for

scale, it is scaled by the orthogonal scale in

both x and y and by Far – Near for the z.

3.2 Geometry Displacement

Displacing the mesh is done every frame,

because otherwise, the mesh would not adapt

to dynamic environments (which could be

desirable in some cases). The OpenGL

function glReadPixels is used to read what is

stored in the light’s shadow map. These

values are stored in a vector and then fed to

the model to update its vertex z position.

The depth values read range from [0, 1] where

0 is at the light’s near plane and 1 at the

light’s far plane. This is the reason why the z

component of the scale matrix is the

subtraction of the Far and Near distances. A

depth of 1 in the shadow map indicates that

the point corresponding to that pixel on the

grid is at z = Far and the same applies for the

Near plane.

Reading the pixels from the shadow map is

something to consider in terms of

performance, as this function will make the

pipeline stall until the frame is done and the

amount of time reading increases the higher

the resolution of the texture is.

std::vector<float> imageData((size_t)mShadowRes.x * (size_t)mShadowRes.y);

glPixelStorei(GL_PACK_ALIGNMENT, 1);

glReadPixels(0, 0, mShadowRes.x, mShadowRes.y, GL_DEPTH_COMPONENT
 , GL_FLOAT, imageData.data());

Updating the vertices depths component

consists of iterating in a loop and assigning

the newly obtained values. Once the new

depths are set, it is the time to connect the

border edges to the light’s position. In order

to do that it is necessary to go through the top,

bottom, left and right of the plane and add the

new indices to the array. For connecting the

top plane, it is necessary to go through the

first row and all columns of the grid and

Advanced Rendering Techniques (2022)

5

(a) (b)

Figure 4: In (a) a visualization of a 512x512 mesh grid facing in the direction of the light and

displaced by the z values from the shadow map in Sponza and in (b) the final directly illuminated

volume with a yellow shading and enclosing a sphere.

connect the vertices in a counterclockwise

order. The same applies for the left, right and

bottom planes but of course connecting

vertices from all rows of the first column, all

rows of the last column and all columns of the

last row respectively.

3.3 Shading

At this point all is left to do is to render the

volume and apply some shade to it. Just

applying some translucency generates

somewhat interesting results.

In order to render the mesh correctly, it is done

after all standard passes, that is, the geometry

pass, lighting pass, decal pass, etc. Depth

testing and face culling are disabled, and

additive blending is used in order to

accumulate the results.

The vertex shader is straightforward, in this

case it transforms the vertices to clip space,

view space and light view space. These las two

are then sent to the fragment shader to be

interpolated.

gl_Position = (uP * uV * uM) * vec4(aPos.x, aPos.y, aPos.z, 1.0);

// vertex position in view space
boundPos_cam = vec3(uV * uM * vec4(aPos.x, aPos.y, aPos.z, 1.0));

// vertex position in light view space
boundPos_light = vec3(uV_light * uM * vec4(aPos.x, aPos.y, aPos.z, 1.0));

The solution of equation 1 solved in

[SRNN05] is not used, as convincing effects

can be achieved in other ways without making

so many computations.

The fragment shader receives the interpolated

vertex positions in both view space and light

view space and a texture containing the depth

information of the scene (other parameters are

also passed such as color, matrices, etc.).

The final goal of the fragment shader is to

compute the airlight at the current intersection,

but first, the scene’s depth buffer must be

sampled in order to clamp the intersection z

value in case it is beyond of what the buffer

has stored. To do that, gl_FragCoord is used to

determine which UVs the mesh occupies in

screen space. Once that is known, the depth

buffer is sampled. In order to do comparisons

both depths need to be in the same space. As

the fragment depth is interpolated in view

space, the read depth must also be converted

into view space. For that, this depth that ranges

from [0, 1] is converted to NDC space where it

ranges [-1, 1] and then multiplied by the

inverse of the projection matrix and applying

perspective division in order to bring it to the

correct space.

// read the depth buffer
vec2 screenSize = textureSize(uDepthMap, 0);
vec2 newUvs = vec2(gl_FragCoord.x / screenSize.x, gl_FragCoord.y / screenSize.y);

float depth = texture(uDepthMap, newUvs).r;

// convert depth to view space
vec4 ndcPos = vec4(newUvs.x, newUvs.y, depth, 1.0f) * 2.0f - 1.0f;
vec4 viewPos = inverse(uPersp) * ndcPos;
viewPos /= viewPos.w;

vec3 boundPosition_cam = boundPos_cam;
float myDepth = boundPos_cam.z;

When both depths are in view space, only a

clamp is necessary in order to avoid seeing the

light volume when an object is in front of it.

Advanced Rendering Techniques (2022)

6

(a) (b)

Figure 5: (a) shows a scene with three objects with depth testing disabled and no z clamping in the

fragment shader. The light volume behind the objects can be seen. (b) shows the same scene but

passing the depth buffer texture into the shader and clamping the z. In this way, the light volume

behind is not seen through the objects.

As mentioned before, each fragment will

compute a term of equation 2. The built-in

variable, gl_FrontFacing is used to determine

if the current fragment is front or back facing.

If it is front facing, Sn will be -1 (entering a lit

region) and 1 otherwise.

// entering a lit region
if(gl_FrontFacing)
 Sn = -1.0f;
// entering an unlit region
if(!gl_FrontFacing)
 Sn = 1.0f;

Once again, a different solution to equation 1

was used to obtain convincing results. The

distance from the viewer to the fragment is

computed and then divided by the total

distance the viewer can see. This yields a

distance between [0, 1], where 1 means that

the fragment is at the viewer’s far plane and 0

at the viewer’s near plane. Multiplying this by

a parameter will make the effect more or less

intense, giving a sense of depth or density. The

greater this value, the denser the light will be

and less will be seen through it. It is also

important to simulate a loss of strength the

further away the fragment is from the light

source. Using the same idea as before, it is

possible to divide the distance of the fragment

to the light by the total distance the light can

see. Reversing this result (1 - x) will change

the range and thus values far away will be

closer to 0 and values nearby the light will be

closer to 1. The basic idea is to multiply the

airlight by this value, by doing this, far away

fragments will be more attenuated and nearby

fragments will be brighter.

The last step is to multiply the airlight value

by the color of the light.

float La = (Sn * normalizedDistance * distFromLight * uDensity);

FragColor = vec4(La, La, La, La) * uColor;

Figure 6: Scene with three objects lit by a

white light using the described formula.

Advanced Rendering Techniques (2022)

7

Figure 7: A yellowish light illuminating a sphere. In this case the airlight does not change the further

away it is from the light source and hence the displaced grid can be seen.

4. Demo

Figure 8: Main screenshot of the demo. The demo shows a scene divided into three parts: left, center

and right, each part with its own light. Each light has a different intensity and color, no falloff and a

512x512 resolution shadow map.

(a) (b) (c)

Figure 9: (a) Shows the left section of the demo. A pink light is illuminating a spinning vent and hence

light rays do not get through the vent’s blades. (b) Shows the center section, a yellow light pointing at

a window, simulating the effect light would have when entering a closed building through doors,

windows or any other open space. (c) Shows the right most section, where a blue light points towards

three objects (Suzanne, a sphere and a cone) spinning in circles. Suzanne and the cone also rotate

respect to themselves, again, generating new volumetric shadows.

Advanced Rendering Techniques (2022)

8

Figure 10: Top view of the demo scene where all three sections are shown from an aerial view. It is

possible to see how light goes through the window in the center section and how all three lights lose

intensity the further away the fragment is from the source.

Figure 11: Center section being illuminated by two lights from different points and angles. As it is

possible to see, light volumes do not interact with each other and hence two shadows are generated

for the window.

Advanced Rendering Techniques (2022)

9

4.1 How to use it

The demo is equipped with several sliders and

buttons to change the look of it. It is also

possible to move the camera around freely

using the W, A, S, D keys to move forward,

left, back and right respectively. Holding the

right click and moving the mouse makes it

possible to look around.

There is a GUI window showing the frames

per second of the scene and three selectables

under it referring to each one of the three

lights. Each light has the name of the section

it corresponds to. The sections are named

from the starting position. If a selectable is

clicked, the corresponding light will be

selected and underneath some parameters will

be able to be tweaked.

The first one is the light’s rotation, which as

its name suggests, will rotate the light and

make it face a different direction. The second

one is the light’s position. The third slider is

the Density slider, increasing the slider will

make the light more intense and decreasing it

will make the light fade out. The fourth

parameter is the falloff. The falloff describes

how much the light decays the further away it

is from the light. Having a falloff of 0 means

no decay. The greater this value, the less far

away the light will reach.

The next parameter is the light’s color, which

will change the color of the light and the light

volume generated. Underneath, it is possible

to find a resolution combo, which allows to

select the resolution of the shadow map for

the currently selected light. Low resolutions

will generate a low number of vertices and

inaccurate meshes, and high resolutions will

generate accurate meshes but at the cost of

performance.

The last thing shown is an image of the

shadow map the currently selected light is

rendering. It can be used to visualize how

each light sees and how resolution changes

affect the final effect.

Figure 12: Top part of the GUI, showing the

FPS, and the three selectables representing

the three lights on the scene.

Figure 13: Once a light is selected, it is

possible to tweak some of its values, such as

rotation, position, density, falloff, its color and

resolution, and to visualize its shadow map.

5. Possible Improvements

As mentioned before, this implementation

does not use the GPU to nor generate the

mesh nor displace the vertices once the light’s

shadow map is read. An obvious

improvement is to use geometry shaders to

generate and displace the vertices in order to

improve performance.

The original paper [MBSA10] implements

adaptive tessellation in order to reduce

polygon count and improve framerates

whereas this implementation does not.

Another improvement to mention is to make

this effect general for all kind of lights: point

lights, spotlights and directional lights and not

only the last one listed. In order to implement

point lights, it would be necessary to take six

pictures of the scene each frame to generate

Advanced Rendering Techniques (2022)

10

the shadow maps and the proceed in the same

way as with directional lights. Spotlights

would be a bit more complex, as these have a

rounded nature the fragment shader would

need to discard and attenuate fragments at the

edges to make the volume have this circular

shape.

As of for now, some artifacts appear around

the extruded shadows of objects. This is most

certainly because of some shadow map

inaccuracies. As it is possible to see in the

demo, these artifacts do not appear in square

objects but do appear in objects that have

rounder edges and shapes. This happens

because the shadow map cannot store all the

smooth information of these objects and

hence stair like patterns appear. In the

fragment shader, parts of this stairs are seen

as front faces instead of back faces and hence

airlight is accumulated wrongly in these parts.

Increasing the shadow map resolution does

help but does not completely solve the

problem.

Figure 14: 256x256 shadow map of a light

rendering a sphere. As it is possible to see,

the round shape is not captured correctly and

the mentioned staircase like pattern appears.

Depending on the point of view of the viewer,

the horizontal or vertical fragments around

the edge are seen as back or front faces

wrongly.

Figure 15: Resulting image from figure 14.

White stripes appear along the extruded

shadow due to these fragments being faced

incorrectly.

Another improvement that can be made is the

interaction between lights. As seen in figure

11, a light A illuminating another light B

should make this last one be affected by A.

The amount depends a little bit on how

intense both lights are. It would also be an

improvement to blend the colors of both lights

together and most certainly not generate

shadows for both.

One more improvement that can be made is to

make the airlight formula view independent

and more precise. The one used generates

interesting results but is not near perfect and

as mentioned, the effect changes depending

on how close the viewer is from the directly

illuminated volume.

5.1 Other approaches

One of other possible implementations is to

trace the view volume and accumulate lit

samples in a texture using shadow map

comparisons. The final intensity depends on

the number of lit samples. The texture is then

combined with the scene and edge blurred due

to aliasing issues in the border edges [VLJ08]

Other possible approach is to implement the

effect as a post process. Using the stencil

buffer, emissive parts of the image are

rendered normally while setting a stencil bit.

Afterwards, the rest of the objects are renderer

Advanced Rendering Techniques (2022)

11

without the stencil bit. In the post processing

part, only fragments with the stencil bit set

will contribute to the additive blended effect.

[KMEA07].

One more approach suggests dividing the

frustum in different planes and project the

shadow generated by an object into the

sampling planes [JM04].

6. Problems during development

The first problem encountered during

development was to face the mesh grid in the

same direction as the light. After some work, I

used the inverse of the glm lookAt function to

make the plane be oriented correctly.

Generating the mesh on the CPU was not

much of an issue and neither was it reading

the shadow map texture and updating the

vertices’ depth.

I struggled a little bit with making the mesh

dynamic while keeping framerates high. As

updating the mesh on the CPU is slow, I had

to find a way to make it as fast as possible

which was done by pre allocating all

necessary memory and reusing it.

Reading through the paper, I found it difficult

to understand how the airlight integral was

implemented in the code. The paper where

this integral is solved does so in a very clean

way, but it got quite complex and out of scope

[SRNN05]. Hence, finding a proper equation

to simulate the desired effect has been

difficult, especially making it view

independent, which it still is not.

I also struggled with depth comparisons.

Passing the depth of the scene as a texture to

the fragment shader was no challenge, but the

result was not what I expected. If an object

outside the illuminated volume is in front of it

from the point of view of the eye, the

fragments of the illuminated volume get

clamped to the stored depth and giving the

look as if some light rays are going through

the object, making it look as if it was

translucent in some way.

Other than that, comping up with an

interesting demo was difficult. The effect

somewhat worked in Sponza, which was the

initial objective, but the last-mentioned issue

made it look very unnatural and strange, as

the light could be seen through the walls and

hence had to create a demo where this did not

happen but still was interesting enough.

7. Conclusions

This solution is quite easy to implement and if

done correctly can give a fresh and unique

look to any scene. Despite all troubles, the

effect is still somewhat believable in isolated

scenarios. It would have been great to

implement the mesh generation on the GPU

and experiment and learn about other types of

shaders.

As the paper suggests, the borders of the mesh

should be connected to the light’s positions,

forming a cone-like shape. In my opinion this

does not look as good or coherent with

directional lights, as light rays are parallel,

and it would be impossible for them to follow

this type of trajectory.

As the performance of the algorithm just

depends on the resolution of the shadow map

it is great for any kind of scene. Besides that,

in most games shadow mapping is already a

must in order to generate shadows, so this

approach integrates quite well in the rendering

pipeline.

Overall, it is an easy and stunning effect to

implement that brings visual quality to

another level.

Advanced Rendering Techniques (2022)

12

8. Bibliography

Mayinger, F. (Ed.). (2013). Optical Measurements: Techniques and Applications. Springer Science &

Business Media.

[MBSA10] Billeter, M., Sintorn, E., & Assarsson, U. (2010). Real time volumetric shadows

using polygonal light volumes. https://www.cse.chalmers.se/~uffe/volumetricshadows.pdf

[SRNN05] Sun, B., Ramamoorthi, R., Narasimhan, S. G., & Nayar, S. K. (2005). A practical

analytic single scattering model for Real time rendering.

https://cseweb.ucsd.edu/~ravir/papers/singlescat/scattering.pdf

[McC00] McCool, M. D. (2000, January 1). Shadow Volume Reconstruction from depth

maps. ACM Transactions on Graphics.

https://dl.acm.org/doi/pdf/10.1145/343002.343006

[VLJ08] Volume Light. (2008, January 15). NVIDIA Developer.

https://developer.download.nvidia.com/SDK/10.5/direct3d/Source/VolumeLight/doc/V

olumeLight.pdf

[KMEA07] Mitchell, K. (2007). Chapter 13. Volumetric light scattering as a post-process.

NVIDIA Developer. https://developer.nvidia.com/gpugems/gpugems3/part-ii-light-and-

shadows/chapter-13-volumetric-light-scattering-post-process

[JM04] Mitchell, J. (2004). Light shafts - AMD. Rendering Shadows in Participating Media.

https://developer.amd.com/wordpress/media/2012/10/Mitchell_LightShafts.pdf

https://www.cse.chalmers.se/~uffe/volumetricshadows.pdf
https://cseweb.ucsd.edu/~ravir/papers/singlescat/scattering.pdf
https://dl.acm.org/doi/pdf/10.1145/343002.343006
https://developer.download.nvidia.com/SDK/10.5/direct3d/Source/VolumeLight/doc/VolumeLight.pdf
https://developer.download.nvidia.com/SDK/10.5/direct3d/Source/VolumeLight/doc/VolumeLight.pdf
https://developer.nvidia.com/gpugems/gpugems3/part-ii-light-and-shadows/chapter-13-volumetric-light-scattering-post-process
https://developer.nvidia.com/gpugems/gpugems3/part-ii-light-and-shadows/chapter-13-volumetric-light-scattering-post-process
https://developer.amd.com/wordpress/media/2012/10/Mitchell_LightShafts.pdf

