Advanced Rendering Techniques (2022)

CS562 Final Project Report

Real Time Volumetric Shadows

Alex Demirci Nijmeijer

DigiPen Institute of Technology Europe-Bilbao

Abstract

Volumetric lighting is an effect that allows to perceive the beam of a light source. It can help
with adding depth and dramatism to a scene, overhauling the overall image.

This report is about the implementation of a paper called Real Time Volumetric Shadows
using Polygonal Light Volumes by Markus Billeter, Erik Sintorn and UIf Assarsson.

This report will discuss what is the problem to solve, how the paper solves it, my solution,
how other papers approach this effect and any improvements that can be made.

1. Introduction

Volumetric lighting is mainly caused by light
scattering, according to B. Kruppa & G.
Strube (1994: 157), a term referring to
physical processes involving the interaction of
light and matter. It is because of such
interactions that the beam of a light can be
physically seen. This beam can help both
artistically and narratively in both movies and
videogames. Volumetric lighting can add
depth to a scene, and it can also help to direct
the eye towards a specific position on the
screen.

This type of effect has existed for a long time
in computer graphics and has been used an
infinite number of times in animated movies,
however, these accurate simulations are
usually computed using path tracing or similar
techniques which are, as for now, not suitable
for real time applications.

It is possible to solve such problem using a
simpler model that only considers single
scattering in a homogeneous medium, which

is accurate enough to be able to run at real
time framerates.

2. Solution Proposed

The solution’s objective is to compute the
amount of light from a point towards an
observer in a homogeneous medium, that is,
from a light towards the camera in a medium
that stays the same.

This amount of light, called airlight, is given
by the following integral [MBSA10].

[Oe/ﬁi(x)
d(x)?

La(do,d1) = [; pk(a) ePdx (1)
This equation is solved in [SRNNO5]. g
symbolizes the scattering coefficient of the
medium and I, the radiant intensity of the light
source. What equation 1 determines is the
airlight along a segment between the points d0
and di.

The model used does not consider airlight in
non-lit areas (areas occluded by an object) and
hence only lit areas contribute to the total
airlight. It is then possible to express the total
airlight as a sum.

Advanced Rendering Techniques (2022)

Light

O

Occluder Occluder

Figure 1: Example of a scene where two
occluders generate shadows that are
intersected by the view ray. The view ray starts
at x = 0 and enters an unlit region at x = x0,
and x = x2, enters a lit region at x = x1 and

x = x3 and intersects an object at x = x4.

As mentioned earlier, only lit regions
contribute to the total airlight. Hence, taking
the example in Figure 1:

LaTotal = La(0,x0) + La(x1,x2) + La(x3, x4).

It quickly becomes apparent that detecting all
these regions is not trivial and if done can
reduce performance [MBSA10].

Using the Additivity of intervals in integrals
property, it is possible to split the integral
between two points A and B into two different
ones at a new point C. It is then possible to
rewrite the equation above as:

LaTotal = La(0,x0) — La(0,x1) +
La(0,x2) — La(0,x3) +
La(0, x4).

At this stage, all computations use the eye’s
position and the intersection with a boundary
along the view ray. It is important to note how
every transition from an unlit to a lit region is
subtracted and every transition from a lit to an
unlit region is added. This will be represented
by the parameter Sn.

Combining everything together the total
airlight along a single view ray is [MBSAL10]:

LaTotal = Y3 Sn La(0,x,) (2)

As mentioned before, Sn will be 1 if going
from a lit to an unlit region and -1 if going
from an unlit to a lit region.

As the paper suggests, creating an enclosed
volume will make the computation of the total
airlight extremely simple. The idea is to use
shadow maps to generate a mesh grid that
matches the resolution of the shadow map.
Then the shadow map depths are read, and the
mesh vertices are displaced by such depth.
Finally, the border edges of the mesh are
connected to the light source, creating a
directly illuminated volume for it. All of this is
done in the GPU following McCool’s
implementation [McCO00].

Once the directly illuminated volume is
generated, it is possible to render it and
compute the total airlight. Each fragment
shader call would represent an eye-ray
intersection with the boundaries. Each
fragment will compute a term in equation 2
and Sn will be determined by front facing and
back facing triangles. Front facing triangles
will represent that the ray is entering a lit
region and Sn will be -1, and vice versa.

The total sum of the equation is computed
using additive blending which allows to sum
all the results along the view ray. As the paper
mentions, it is very desirable to render the
mesh with depth testing disabled, but because
of inaccuracies of the shadow map, artifacts
will appear [MBSA10]. This happens because
some fragments will be inside the scene
geometry and some other not.

This can easily be fixed by disabling depth
testing and passing the depth buffer to the
fragment shader and basically clamping the
values to the scene’s depth and then
processing the fragment as usual. This means
that if the current fragment is beyond the
maximum stored depth in the depth buffer, it
will be set to have that depth.

In addition to that, the paper suggests to use
Adaptive Tessellation. This is because the
algorithm’s performance depends only on the
resolution of the shadow map. The higher the
resolution, the more vertices are generated for
the mesh. Flat surfaces do not require of a

Advanced Rendering Techniques (2022)

Figure 2: Surface acne produced by the innacuracies of a shadow map with a resolution of 512x512.
It is possible to see how some of the fragments are inside the primitives producing this so called
“surface acne”. Increasing the shadow map resolution mitigates the artifact but does not make it

disappear.

large amount of vertices whereas places in the
mesh where there is a lot of variance in depth
and height do. Tessellating the mesh will
reduce the number of vertices significantly,
improving the overall performance.

3. My Implementation

In this case, the volumetric shadows were
implemented exclusively for directional
lights. A shadow map needs to be generated
with a square resolution and an orthogonal
projection. The orthographic projection takes
4 parameters: left, right, top and bottom.

These four values need to be the same in order
to form a completely square projection. This
value will be referred as orthogonal scale.

Generating the shadow map is extremely
straightforward, in the deferred shading
pipeline, the scene needs to be drawn from the
lights point of view and stored as a texture
with the depth values.

3.1 Generating the geometry on the CPU

In order to generate the geometry, what was
done was to set an initial position at the point
(-1, 1, 0) and compute the distance each
points need to have with each other to be
evenly spaced in the grid. As the mesh, in
model coordinates, goes from -1 to 1 in both x
and y axis, the total distance is 2. Dividing 2
by the resolution on either axis results in the
mentioned distance.

2

Distance = ———
resolution

Once the distance between the points is
obtained, it is possible to loop through rows
and columns and offset the initial point to fill
the grid.

for (int row = @; row < resolution.y; ++row)

{

for (int col = @; col < resolution.x; ++col)

{

glm::vec3 point = initPos;
point.x += (col * distanceBetweenPoints);
point.y -= (row * distanceBetweenPoints);

mPoints[(size_t)columns * (size_t)row + (size_t)col] = point;

}

As it is possible to see, the push_back()
function of vectors is not used, this is because
this function allocates memory every time its
capacity is reached, hence, all of this memory
is allocated before hand and then the array is
accessed via the subscript operator for
efficiency. The resizing is the multiplication of
the width and height of the resolution + 1. This
extra space in the array is where the lights
position is stored in order to connect the
border edges of the mesh later.

Generating the grid in a brute force manner
will have a huge impact on performance and
how memory is used because of the
duplication of triangles. That is why element
buffer objects were used in order to reduce the
duplication of points and give a boost to
performance.

Advanced Rendering Techniques (2022)

Figure 3: lllustration on how vertex indices are stored. Not using element buffer objects would
increase the number of vertices the model uses. Both triangles use vertex 0 and 2 and it is then
tempting to generate the left triangle with 3 vertices and right triangle with 3 more vertices, with a
total of 6. It is possible to reduce this to only 4. In the case of a 4x4 grid not using EBOs would yield
54 vertices and using them only 16. It is possible to see how quickly this can scale with larger

resolution grids.

Once the vertices and indices are computed
and stored, they are sent to the GPU. Itis
important to note that only the position
attribute is used as no other type of attributes
such as UVs or normals are required.

// upload the vertices
glBindBuffer (GL_ARRAY_BUFFER, mVbo);

glBufferData(GL_ARRAY_BUFFER, sizeof(glm::vec3) * mPoints.size(),

reinterpret_cast<void*>(mPoints.data()), GL_STATIC_DRAW);

// upload the indices
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mEbo);

The depth values read range from [0, 1] where
0 is at the light’s near plane and 1 at the
light’s far plane. This is the reason why the z
component of the scale matrix is the
subtraction of the Far and Near distances. A
depth of 1 in the shadow map indicates that
the point corresponding to that pixel on the
grid is at z = Far and the same applies for the
Near plane.

Reading the pixels from the shadow map is

glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(unsigned) * mElements.size(Something to ConSider in terms Of

mElements.data() , GL_STATIC_DRAW);

// set the attribute for positions only
glEnableVertexAttribArray(0);

performance, as this function will make the
pipeline stall until the frame is done and the

glVertexAttribPointer(@, 3, GL_FLOAT, GL_FALSE, sizeof(glm::vec3), (voidéméunt Of tlme I‘eadlng |ncreases the hlgher

In terms of matrix transformations, the model
to world matrix is computed in a very simple
way. For translation, the plane is placed at the
light’s position, for rotation, it is rotated to
face the same direction as the light and for
scale, it is scaled by the orthogonal scale in
both x and y and by Far — Near for the z.

3.2 Geometry Displacement

Displacing the mesh is done every frame,
because otherwise, the mesh would not adapt
to dynamic environments (which could be
desirable in some cases). The OpenGL
function glReadPixels is used to read what is
stored in the light’s shadow map. These
values are stored in a vector and then fed to
the model to update its vertex z position.

the resolution of the texture is.

std::vector<float> imageData((size_t)mShadowRes.x * (size t)mShadowRes.y);
glPixelStorei(GL_PACK_ALIGNMENT, 1);

glReadPixels(@, @, mShadowRes.x, mShadowRes.y, GL_DEPTH_COMPONENT
, GL_FLOAT, imageData.data());

Updating the vertices depths component
consists of iterating in a loop and assigning
the newly obtained values. Once the new
depths are set, it is the time to connect the
border edges to the light’s position. In order
to do that it is necessary to go through the top,
bottom, left and right of the plane and add the
new indices to the array. For connecting the
top plane, it is necessary to go through the
first row and all columns of the grid and

Advanced Rendering Techniques (2022)

(@)

(b)

Figure 4: In (a) a visualization of a 512x512 mesh grid facing in the direction of the light and
displaced by the z values from the shadow map in Sponza and in (b) the final directly illuminated

volume with a yellow shading and enclosing a sphere.

connect the vertices in a counterclockwise
order. The same applies for the left, right and
bottom planes but of course connecting
vertices from all rows of the first column, all
rows of the last column and all columns of the
last row respectively.

3.3 Shading

At this point all is left to do is to render the
volume and apply some shade to it. Just
applying some translucency generates
somewhat interesting results.

In order to render the mesh correctly, it is done
after all standard passes, that is, the geometry
pass, lighting pass, decal pass, etc. Depth
testing and face culling are disabled, and
additive blending is used in order to
accumulate the results.

The vertex shader is straightforward, in this
case it transforms the vertices to clip space,
view space and light view space. These las two
are then sent to the fragment shader to be
interpolated.

= (uP * uv * uM) * (aPos.x, aPos.y, aPos.z, 1.0);

// vertex position in view space
boundPos_cam = (uv * um *

// vertex position in light view space
boundPos_light = (uv_light * um *

The solution of equation 1 solved in
[SRNNO5] is not used, as convincing effects
can be achieved in other ways without making
S0 many computations.

(aPos.x, aPos.y, aPos.z, 1.0));

(aPos.x, aPos.y, aPos.z,.1:@)kipos =

The fragment shader receives the interpolated
vertex positions in both view space and light
view space and a texture containing the depth
information of the scene (other parameters are
also passed such as color, matrices, etc.).

The final goal of the fragment shader is to
compute the airlight at the current intersection,
but first, the scene’s depth buffer must be
sampled in order to clamp the intersection z
value in case it is beyond of what the buffer
has stored. To do that, gl_FragCoord is used to
determine which UVs the mesh occupies in
screen space. Once that is known, the depth
buffer is sampled. In order to do comparisons
both depths need to be in the same space. As
the fragment depth is interpolated in view
space, the read depth must also be converted
into view space. For that, this depth that ranges
from [0, 1] is converted to NDC space where it
ranges [-1, 1] and then multiplied by the
inverse of the projection matrix and applying
perspective division in order to bring it to the

correct space.
// read the depth buffer

screenSize =
newlvs = (

(uDepthMap, 0);

.X / screenSize.x, .y / screenSize.y);

depth = (uDepthMap, newUvs).r;

// convert depth to view space

ndcPos = (newUvs.x, newUvs.y, depth, 1.0f) * 2.0f - 1.ef;
(uPersp) * ndcPos;
viewPos /= viewPos.w;

boundPosition_cam = boundPos_cam;
myDepth = boundPos_cam.z;

When both depths are in view space, only a
clamp is necessary in order to avoid seeing the
light volume when an object is in front of it.

Advanced Rendering Techniques (2022)

(@)

(b)

Figure 5: (a) shows a scene with three objects with depth testing disabled and no z clamping in the
fragment shader. The light volume behind the objects can be seen. (b) shows the same scene but
passing the depth buffer texture into the shader and clamping the z. In this way, the light volume

behind is not seen through the objects.

As mentioned before, each fragment will
compute a term of equation 2. The built-in
variable, gl_FrontFacing is used to determine
if the current fragment is front or back facing.
If it is front facing, Sn will be -1 (entering a lit
region) and 1 otherwise.

// entering a lit region

()
Sn = -1.0f;
// entering an unlit region

(!)
Sn = 1.0f;

Once again, a different solution to equation 1
was used to obtain convincing results. The
distance from the viewer to the fragment is
computed and then divided by the total
distance the viewer can see. This yields a
distance between [0, 1], where 1 means that
the fragment is at the viewer’s far plane and 0
at the viewer’s near plane. Multiplying this by
a parameter will make the effect more or less
intense, giving a sense of depth or density. The
greater this value, the denser the light will be
and less will be seen through it. It is also
important to simulate a loss of strength the
further away the fragment is from the light
source. Using the same idea as before, it is
possible to divide the distance of the fragment

to the light by the total distance the light can
see. Reversing this result (1 - x) will change
the range and thus values far away will be
closer to 0 and values nearby the light will be
closer to 1. The basic idea is to multiply the
airlight by this value, by doing this, far away
fragments will be more attenuated and nearby
fragments will be brighter.

The last step is to multiply the airlight value
by the color of the light.

La = (Sn * normalizedDistance * distFromLight * uDensity);

FragColor = (La, La, La, La) * uColor;

Figure 6: Scene with three objects lit by a
white light using the described formula.

Advanced Rendering Techniques (2022)

Figure 7: A yellowish light illuminating a sphere. In this case the airlight does not change the further
away it is from the light source and hence the displaced grid can be seen.

4, Demo

Figure 8: Main screenshot of the demo. The demo shows a scene divided into three parts: left, center
and right, each part with its own light. Each light has a different intensity and color, no falloff and a

512x512 resolution shadow map.

(@) (b) (©)

Figure 9: (a) Shows the left section of the demo. A pink light is illuminating a spinning vent and hence
light rays do not get through the vent’s blades. (b) Shows the center section, a yellow light pointing at
a window, simulating the effect light would have when entering a closed building through doors,
windows or any other open space. (c) Shows the right most section, where a blue light points towards
three objects (Suzanne, a sphere and a cone) spinning in circles. Suzanne and the cone also rotate
respect to themselves, again, generating new volumetric shadows.

Advanced Rendering Techniques (2022)

Figure 10: Top view of the demo scene where all three sections are shown from an aerial view. It is
possible to see how light goes through the window in the center section and how all three lights lose
intensity the further away the fragment is from the source.

Figure 11: Center section being illuminated by two lights from different points and angles. As it is
possible to see, light volumes do not interact with each other and hence two shadows are generated
for the window.

Advanced Rendering Techniques (2022)

4.1 How to use it

The demo is equipped with several sliders and
buttons to change the look of it. It is also
possible to move the camera around freely
using the W, A, S, D keys to move forward,
left, back and right respectively. Holding the
right click and moving the mouse makes it
possible to look around.

There is a GUI window showing the frames
per second of the scene and three selectables
under it referring to each one of the three
lights. Each light has the name of the section
it corresponds to. The sections are named
from the starting position. If a selectable is
clicked, the corresponding light will be
selected and underneath some parameters will
be able to be tweaked.

The first one is the light’s rotation, which as
its name suggests, will rotate the light and
make it face a different direction. The second
one is the light’s position. The third slider is
the Density slider, increasing the slider will
make the light more intense and decreasing it
will make the light fade out. The fourth
parameter is the falloff. The falloff describes
how much the light decays the further away it
is from the light. Having a falloff of 0 means
no decay. The greater this value, the less far
away the light will reach.

The next parameter is the light’s color, which
will change the color of the light and the light
volume generated. Underneath, it is possible
to find a resolution combo, which allows to
select the resolution of the shadow map for
the currently selected light. Low resolutions
will generate a low number of vertices and
inaccurate meshes, and high resolutions will
generate accurate meshes but at the cost of
performance.

The last thing shown is an image of the
shadow map the currently selected light is
rendering. It can be used to visualize how
each light sees and how resolution changes
affect the final effect.

FPS: 73
Right

Cenkter

Lefk

Figure 12: Top part of the GUI, showing the
FPS, and the three selectables representing
the three lights on the scene.

Lefk
Rotation
Eian
Y
Falloff
Light lar
¥ Reszolution

Shadow Map

Figure 13: Once a light is selected, it is
possible to tweak some of its values, such as
rotation, position, density, falloff, its color and
resolution, and to visualize its shadow map.

5. Possible Improvements

As mentioned before, this implementation
does not use the GPU to nor generate the
mesh nor displace the vertices once the light’s
shadow map is read. An obvious
improvement is to use geometry shaders to
generate and displace the vertices in order to
improve performance.

The original paper [MBSA10] implements
adaptive tessellation in order to reduce
polygon count and improve framerates
whereas this implementation does not.

Another improvement to mention is to make
this effect general for all kind of lights: point
lights, spotlights and directional lights and not
only the last one listed. In order to implement
point lights, it would be necessary to take six
pictures of the scene each frame to generate

Advanced Rendering Techniques (2022)

the shadow maps and the proceed in the same
way as with directional lights. Spotlights
would be a bit more complex, as these have a
rounded nature the fragment shader would
need to discard and attenuate fragments at the
edges to make the volume have this circular
shape.

As of for now, some artifacts appear around
the extruded shadows of objects. This is most
certainly because of some shadow map
inaccuracies. As it is possible to see in the
demo, these artifacts do not appear in square
objects but do appear in objects that have
rounder edges and shapes. This happens
because the shadow map cannot store all the
smooth information of these objects and
hence stair like patterns appear. In the
fragment shader, parts of this stairs are seen
as front faces instead of back faces and hence

airlight is accumulated wrongly in these parts.

Increasing the shadow map resolution does
help but does not completely solve the
problem.

Figure 14: 256x256 shadow map of a light
rendering a sphere. As it is possible to see,
the round shape is not captured correctly and
the mentioned staircase like pattern appears.
Depending on the point of view of the viewer,
the horizontal or vertical fragments around
the edge are seen as back or front faces
wrongly.

10

Figure 15: Resulting image from figure 14.
White stripes appear along the extruded
shadow due to these fragments being faced
incorrectly.

Another improvement that can be made is the
interaction between lights. As seen in figure
11, a light A illuminating another light B
should make this last one be affected by A.
The amount depends a little bit on how
intense both lights are. It would also be an
improvement to blend the colors of both lights
together and most certainly not generate
shadows for both.

One more improvement that can be made is to
make the airlight formula view independent
and more precise. The one used generates
interesting results but is not near perfect and
as mentioned, the effect changes depending
on how close the viewer is from the directly
illuminated volume.

5.1 Other approaches

One of other possible implementations is to
trace the view volume and accumulate lit
samples in a texture using shadow map
comparisons. The final intensity depends on
the number of lit samples. The texture is then
combined with the scene and edge blurred due
to aliasing issues in the border edges [\VLJ08]

Other possible approach is to implement the
effect as a post process. Using the stencil
buffer, emissive parts of the image are
rendered normally while setting a stencil bit.
Afterwards, the rest of the objects are renderer

Advanced Rendering Techniques (2022)

without the stencil bit. In the post processing
part, only fragments with the stencil bit set
will contribute to the additive blended effect.

[KMEAOQ7].

One more approach suggests dividing the
frustum in different planes and project the
shadow generated by an object into the

sampling planes [JMO04].

6. Problems during development

The first problem encountered during
development was to face the mesh grid in the
same direction as the light. After some work, |
used the inverse of the glm lookAt function to
make the plane be oriented correctly.
Generating the mesh on the CPU was not
much of an issue and neither was it reading
the shadow map texture and updating the
vertices’ depth.

I struggled a little bit with making the mesh
dynamic while keeping framerates high. As
updating the mesh on the CPU is slow, I had
to find a way to make it as fast as possible
which was done by pre allocating all
necessary memory and reusing it.

Reading through the paper, | found it difficult
to understand how the airlight integral was
implemented in the code. The paper where
this integral is solved does so in a very clean
way, but it got quite complex and out of scope
[SRNNO5]. Hence, finding a proper equation
to simulate the desired effect has been
difficult, especially making it view
independent, which it still is not.

I also struggled with depth comparisons.
Passing the depth of the scene as a texture to
the fragment shader was no challenge, but the
result was not what I expected. If an object
outside the illuminated volume is in front of it
from the point of view of the eye, the
fragments of the illuminated volume get
clamped to the stored depth and giving the
look as if some light rays are going through
the object, making it look as if it was
translucent in some way.

11

Other than that, comping up with an
interesting demo was difficult. The effect
somewhat worked in Sponza, which was the
initial objective, but the last-mentioned issue
made it look very unnatural and strange, as
the light could be seen through the walls and
hence had to create a demo where this did not
happen but still was interesting enough.

7. Conclusions

This solution is quite easy to implement and if
done correctly can give a fresh and unique
look to any scene. Despite all troubles, the
effect is still somewhat believable in isolated
scenarios. It would have been great to
implement the mesh generation on the GPU
and experiment and learn about other types of
shaders.

As the paper suggests, the borders of the mesh
should be connected to the light’s positions,
forming a cone-like shape. In my opinion this
does not look as good or coherent with
directional lights, as light rays are parallel,
and it would be impossible for them to follow
this type of trajectory.

As the performance of the algorithm just
depends on the resolution of the shadow map
it is great for any kind of scene. Besides that,
in most games shadow mapping is already a
must in order to generate shadows, so this
approach integrates quite well in the rendering
pipeline.

Overall, it is an easy and stunning effect to
implement that brings visual quality to
another level.

Advanced Rendering Techniques (2022)

8. Bibliography

Mayinger, F. (Ed.). (2013). Optical Measurements: Techniques and Applications. Springer Science &
Business Media.

[MBSA10] Billeter, M., Sintorn, E., & Assarsson, U. (2010). Real time volumetric shadows
using polygonal light volumes. https://www.cse.chalmers.se/~uffe/volumetricshadows.pdf

[SRNNO5] Sun, B., Ramamoorthi, R., Narasimhan, S. G., & Nayar, S. K. (2005). A practical
analytic single scattering model for Real time rendering.
https://cseweb.ucsd.edu/~ravir/papers/singlescat/scattering.pdf

[McC00] McCool, M. D. (2000, January 1). Shadow Volume Reconstruction from depth
maps. ACM Transactions on Graphics.
https://dl.acm.org/doi/pdf/10.1145/343002.343006

[\VVLJO8] Volume Light. (2008, January 15). NVIDIA Developer.
https://developer.download.nvidia.com/SDK/10.5/direct3d/Source/VolumeLight/doc/V
olumeLight.pdf

[KMEAO7] Mitchell, K. (2007). Chapter 13. Volumetric light scattering as a post-process.
NVIDIA Developer. https://developer.nvidia.com/gpugems/gpugems3/part-ii-light-and-
shadows/chapter-13-volumetric-light-scattering-post-process

[JMO4] Mitchell, J. (2004). Light shafts - AMD. Rendering Shadows in Participating Media.
https://developer.amd.com/wordpress/media/2012/10/Mitchell_LightShafts.pdf

12

https://www.cse.chalmers.se/~uffe/volumetricshadows.pdf
https://cseweb.ucsd.edu/~ravir/papers/singlescat/scattering.pdf
https://dl.acm.org/doi/pdf/10.1145/343002.343006
https://developer.download.nvidia.com/SDK/10.5/direct3d/Source/VolumeLight/doc/VolumeLight.pdf
https://developer.download.nvidia.com/SDK/10.5/direct3d/Source/VolumeLight/doc/VolumeLight.pdf
https://developer.nvidia.com/gpugems/gpugems3/part-ii-light-and-shadows/chapter-13-volumetric-light-scattering-post-process
https://developer.nvidia.com/gpugems/gpugems3/part-ii-light-and-shadows/chapter-13-volumetric-light-scattering-post-process
https://developer.amd.com/wordpress/media/2012/10/Mitchell_LightShafts.pdf

